
Daniel Llamocca

DIGITAL LOGIC DESIGN
VHDL Coding for FPGAs

Unit 3
✓BEHAVIORAL DESCRIPTION

▪ Asynchronous processes (decoder, mux,

encoder, etc): if-else, case, for-loop.

▪ Arithmetic expressions inside asynchronous

processes.

Daniel Llamocca

✓ BEHAVIORAL DESCRIPTION
(OR SEQUENTIAL)

▪ In this design style, the circuit is described via a series of
statements (also called sequential statements) that are
executed one after other; here the order is very important.
This feature is advantageous when it comes to implement
sequential circuits. The sequential statements must be
within a block of VHDL code called ‘process’.

▪ The sequential code suits the description of sequential circuits
very well. However, we can also describe combinatorial
circuits with sequential statements.

▪ Here we will use the sequential description style to implement
combinatorial circuits. In this instance, the block of VHDL code
(‘process’) is called asynchronous process.

Daniel Llamocca

▪ ASYNCHRONOUS PROCESSES
(Implementation of combinatorial circuits with sequential statements)

Below we show the syntax of a sequential description. Note that the
‘process’ statement denotes the sequential block.

entity example is

port (...

...);

end example;

architecture behav of example is

begin

process (signal_1, signal_2, ...)

begin

...

...

...

end process;

end behav;

Sensitivy list
(all the signals used
inside the process)

Beginning
of process block

End of
process block

Sequential
Statements

Daniel Llamocca

▪ SEQUENTIAL STATEMENTS:

▪ IF Statement: Simple Conditional

▪ Example: AND gate. The sensitivity list is made of ‘a’ and ‘b’. We
can use any other gate: OR, NOR, NAND, XOR, XNOR.

▪ It is a good coding practice to include all the signals used inside
the process in the sensitivity list.

▪ Xilinx Synthesizer: DO NOT omit any signal in the sensitivity list,
otherwise the Behavioral Simulation (iSIM) will be incorrect. This
is usually not a problem for other Synthesizers.

f

a

b

library ieee;

use ieee.std_logic_1164.all;

entity my_and is

port (a, b: in std_logic;

f: out std_logic);

end my_and;

architecture behav of my_and is

begin

process (a,b)

begin

if (a = '1') and (b = '1') then

f <= '1';

else

f <= '0';

end if;

end process;

end behav;

Daniel Llamocca

▪ IF Statement:

▪ Example: 2-to-1 Multiplexor:

Three different coding styles:
0

1

a

b

s

y = sa + sb

y

library ieee;

use ieee.std_logic_1164.all;

entity my_mux21 is

port (a, b, s: in std_logic;

y: out std_logic);

end my_mux21;

architecture st of my_mux21 is

begin

y <= (not(s) and a) or (s and b);

end st;

architecture st of my_mux21 is

begin

process (a,b,s)

begin

if s = '0' then

y <= a;

else

y <= b;

end if;

end process;

end st;

architecture st of my_mux21 is

begin

with s select

y <= a when '0',

b when others;

end st;

Daniel Llamocca

▪ IF Statement:

▪ Example: 4-to-1 Multiplexor

Two different styles:

library ieee;

use ieee.std_logic_1164.all;

entity my_mux41 is

port (a,b,c,d: in std_logic;

s: in std_logic_vector (1 downto 0);

y: out std_logic);

end my_mux41;

architecture st of my_mux41 is

begin

with s select

y <= a when "00",

b when "01",

c when "10",

d when "11",

'-' when others;

end st;

architecture st of my_mux41 is

begin

process (a,b,c,d,s)

begin

if s = "00" then y <= a;

elsif s = "01" then y <= b;

elsif s = "10" then y <= c;

else y <= d;

end if;

end process;

end st;

0

s

1

2

3

a

b

c

d

2

y

Daniel Llamocca

▪ IF Statement

▪ Example:
4-to-2 priority encoder

PRIORITY
ENCODER

w3 y1

y0
w2

w1

w0 z

w1 w0

0 0

x x

1 x

0 1

0

x

x

x

0 0 1

w2 y0 zy1

0 0

1 1

1 0

0 1

0

1

1

1

0 0 1

0

1

0

0

0

w3

library ieee;

use ieee.std_logic_1164.all;

entity my_prienc is

port (w: in std_logic_vector (3 downto 0);

y: out std_logic_vector (1 downto 0);

z: out std_logic);

end my_prienc;

architecture bhv of my_prienc is

begin

process (w)

begin

if w(3) = '1' then y <= "11";

elsif w(2) = '1' then y <= "10;

elsif w(1) = '1' then y <= "01";

else y <= "00";

end if;

if w = "0000" then

z <= '0';

else

z <= '1';

end if;

end process;

end bhv;

• The priority level is implicit
by having w(3) in the first
‘if’, and w(2) in the second
‘if’, and so on.

Daniel Llamocca

▪ Process: Statements are
‘executed’ (the way the
synthesizer reads it) one
after the other.

▪ The first statement
assigns y <= “00”. Then
the value of ‘y’ changes
ONLY if the conditions are
met for the input ‘w’.

▪ Note the order: w(1),
w(2), w(3). This
establishes a priority for
w(3) (last statement to
be executed).

▪ ‘z’ starts with ‘1’, but if
the condition is met, it is
changed to ‘0’.

▪ IF Statement

▪ Example: 4-to-2
priority encoder
(another style)

library ieee;

use ieee.std_logic_1164.all;

entity my_tprienc is

port (w: in std_logic_vector (3 downto 0);

y: out std_logic_vector (1 downto 0);

z: out std_logic);

end my_tprienc;

architecture bhv of my_tprienc is

begin

process (w)

begin

y <= "00";

if w(1) = '1' then y <= "01"; end if;

if w(2) = '1' then y <= "10"; end if;

if w(3) = '1' then y <= "11"; end if;

z <= '1';

if w = "0000" then z <= '0'; end if;

end process;

end bhv;

Daniel Llamocca

architecture struct of my_comp is

begin

y <= '1' when A = B else '0';

end struct;

architecture behav of my_comp is

begin

process (a,b)

begin

if (A = B) then

y <= '1';

else

y <= '0';

end if;

end process;

end behav;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all; -- unsigned #s

entity my_comp is

port (A,B: in std_logic_vector (3 downto 0);

y: out std_logic);

end my_comp;

▪ IF Statement:

▪ Example: 4-bit comparator

COMPA-
RATOR

A = B?

A

y

B

y

A3

B3

A2

B2

A1

B1

A0

B0

Daniel Llamocca

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all; -- unsigned #s

entity my_comp is

port (A,B: in std_logic_vector (3 downto 0);

y: out std_logic);

end my_comp;

architecture behav of my_comp is

begin

process (a,b)

begin

if (A = B) then

y <= '1';

end if;

end process;

end behav;

▪ IF Statement:

▪ Example of ‘bad design’:
4-bits comparator, but the ‘else’ is omitted:

Warning!

If a ≠ b → y = ?

Since we did not
specify what happens
when a ≠ b, the
synthesizer assumes
that we want to keep
the last value of ‘y’.

In the circuit, initially ‘y’
will be ‘0’. But:

If a = b → y = ‘1’
forever. It is said that
the output has an
implicit memory since it
‘remembers’ the
previous value of y.
This results in a faulty
comparator.

The synthesized circuit
would look like this:

y

A3

B3

A2

B2

A1

B1

A0

B0

Daniel Llamocca

architecture behav of my_comp is

begin

process (a,b)

begin

if (A = B) then

y <= '1';

else

y <= '0';

end if;

end process;

end behav;

architecture behav of my_comp is

begin

process (a,b)

begin

if (A = B) then

y <= '1';

end if;

end process;

end behav;

The case 'A B'
is never specified

▪ RULES FOR A GOOD COMBINATORIAL
DESIGN USING PROCESSES

▪ Rule 1: EVERY input signal that is used within the process must
appear in the sensitivy list.

▪ Rule 2: ALL the possible Input/Output combinations must be
specified. Otherwise, we will find issues with implicit memory..

Daniel Llamocca

▪ IF Statement. Example: Majority gate
Triple Modular Redundancy:
To improve reliability, a
system is replicated three
times. The 3 generated
outputs go into a majority-
voting system (majority gate)
to produce a single output.

If at least two replicas
produce identical outputs →
the majority gate selects that
output. If the three replicas
produce different results, the
majority gate asserts an error
flag (y_error = ‘1’)

library ieee;

use ieee.std_logic_1164.all;

entity my_maj_gate is

generic (N: INTEGER:= 8);

port (A,B,C: in std_logic_vector(N-1 downto 0);

f: out std_logic_vector(N-1 downto 0);

y_err: out std_logic);

end my_maj_gate;

architecture bhv of my_maj_gate is

begin

process (A,B,C)

begin

y_err <= '0';

if (A = B) then f <= A; end if;

if (A = C) then f <= A; end if;

if (B = C) then f <= B; end if;

if (A/=B) and (B/=C) and (A/=C) then

f <= (others => '0');

y_err <= '1';

end if;

end process;

end bhv;

System

replica 1

Majority

gate

N

N

N N

N

N

N

y_error

System

replica 2

System

replica 3

➢ my_maj_gate.zip: my_maj_gate.vhd,

tb_ my_maj_gate.vhd

Daniel Llamocca

library ieee;

use ieee.std_logic_1164.all;

entity my_mux8to1 is

port (a,b,c,d,e,f,g,h: in std_logic;

s: in std_logic_vector (2 downto 0);

y: out std_logic);

end my_mux8to1;

architecture bhv of my_mux8to1 is

begin

process (a,b,c,d,e,f,g,h,s)

begin

case s is

when "000" => y <= a;

when "001" => y <= b;

when "010" => y <= c;

when "011" => y <= d;

when "100" => y <= e;

when "101" => y <= f;

when "110" => y <= g;

when others => y <= h;

end case;

end process;

end bhv;

▪ SEQUENTIAL STATEMENTS:
CASE statement

0

s

1

2

3

a

b

c

d

3

y

4

5

6

7

e

f

g

h

It is used in multi-decision
cases when nested IF’s
become complex.

All possible choices must be
included (see the keyword
when for every choice of the
‘selection signal’)

Last case: We must use when
others (even if all the 0/1s,
as std_logic has 9 possible
values). This also avoids
outputs with implicit memory.

▪ Example: MUX 8-to-1 →

Daniel Llamocca

▪ CASE Statement:

▪ Example: MUX 7-to-1

▪ Note: y <= ‘-’ (don’t care).
This allows the synthesizer to
optimize the circuit.

▪ If, however, we had used
when others => y <= g;
The synthesizer would have
assigned the value ‘g’ for the
cases “110” and “111” (a
slighty less optimal circuit).

library ieee;

use ieee.std_logic_1164.all;

entity my_mux7to1 is

port (a,b,c,d,e,f,g: in std_logic;

s: in std_logic_vector (2 downto 0);

y: out std_logic);

end my_mux7to1;

architecture bhv of my_mux7to1 is

begin

process (a,b,c,d,e,f,g,s)

begin

case s is

when "000" => y <= a;

when "001" => y <= b;

when "010" => y <= c;

when "011" => y <= d;

when "100" => y <= e;

when "101" => y <= f;

-- when others => y <= g;

when "110" => y <= g;

when others => y <= '-';

end case;

end process;

end bhv;

when "110" => y <= g;

when "111" => y <= g;

Daniel Llamocca

▪ CASE Statement:

▪ Example:
Binary to gray decoder

▪ It could also be
described using the
‘with-select’ statement
(no process)

b2b1b0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

g2g1g0

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

library ieee;

use ieee.std_logic_1164.all;

entity my_gray2bin is

port (B: in std_logic_vector(2 downto 0);

G: in std_logic_vector(2 downto 0));

end my_gray2bin;

architecture bhv of my_gray2bin is

begin

process (B)

begin

case B is

when "000" => G <= "000";

when "001" => G <= "001";

when "010" => G <= "011";

when "011" => G <= "010";

when "100" => G <= "110";

when "101" => G <= "111";

when "110" => G <= "101";

when others => G <= "100";

end case;

end process;

end bhv;

Daniel Llamocca

▪ CASE statement

▪ Example:
7-segment decoder.

▪ We use the don’t care
value (‘-’) to optimize
the circuit, since we only
expect inputs from
“0000” to “1111”.

▪ Note that the CASE
statement avoids the
output with implicit
memory, since the when
others clause makes
sure that the remaining
cases are assigned.

library ieee;

use ieee.std_logic_1164.all;

entity my_7segdec is

port (bcd: in std_logic_vector(3 downto 0);

leds: out std_logic_vector(6 downto 0));

end my_7segdec;

architecture bhv of my_7segdec is

begin

process (bcd)

begin

case bcd is -- abcdefg

when "0000" => leds <= "1111110";

when "0001" => leds <= "0110000";

when "0010" => leds <= "1101101";

when "0011" => leds <= "1111001";

when "0100" => leds <= "0110011";

when "0101" => leds <= "1011011";

when "0110" => leds <= "1011111";

when "0111" => leds <= "1110000";

when "1000" => leds <= "1111111";

when "1001" => leds <= "1111011";

when others => leds <= "-------";

end case;

end process;

end bhv;

Daniel Llamocca

▪ CASE Statement:

▪ Example:
2-to-4 decoder with enable.

▪ Note how we combine IF
with CASE for this decoder
with enable.

▪ The else cannot be
omitted, otherwise the
output will have implicit
memory (it will be a LATCH)

DECODER

w

E

y
2

4

library ieee;

use ieee.std_logic_1164.all;

entity my_dec2to4 is

port (w: in std_logic_vector(1 downto 0);

y: out std_logic_vector(3 downto 0);

E: in std_logic);

end my_dec2to4;

architecture bhv of my_dec2to4 is

begin

process (w,E)

begin

if E = '1' then

case w is

when "00" => y <= "0001";

when "01" => y <= "0010";

when "10" => y <= "0100";

when others => y <= "1000";

end case;

else y <= "0000";

end if;

end process;

end bhv;

Example: 2-to-4 decoder (3 styles):

➢ mydec2to4.zip:

mydec2to4.vhd,

tb_mydec2to4.vhd,

mydec2to4.ucf

Daniel Llamocca

▪ FOR-LOOP statement

b3b2b1b0

sign-

extender

b3b3b3b3b3b2b1b0

4

8

▪ Very useful for
sequential circuit
description. But, it
can also be used
to describe some
combinatorial
circuits.

▪ Example: Sign-
extension (from 4
bits to 8 bits)

library ieee;

use ieee.std_logic_1164.all;

entity my_signext is

port (A: in std_logic_vector(3 downto 0);

y: out std_logic_vector(7 downto 0));

end my_signext;

architecture bhv of my_signext is

begin

process(A)

begin

y(3 downto 0) <= A;

for i in 7 downto 4 loop

y(i) <= A(3);

end loop;

end process;

end bhv;

Daniel Llamocca

▪ FOR-LOOP statement

▪ Example: Ones/zeros detector: It detects whether the input contains only 0’s
or only 1’s.

▪ Input length:
Parameter ‘N’.

▪ This is a rare instance
where using process
for combinational
circuits is the most
efficient description.

▪ Variable inside a
process: it helps to
describe this circuit.
Depending on the
implementation, a
‘variable’ could be a
wire.

➢ zeros_ones_detector.zip:

zeros_ones_detector.vhd,

tb_zeros_ones_detector.vhd,

zeros_ones_detector.ucf

library ieee;

use ieee.std_logic_1164.all;

entity zeros_ones_det is

generic (N: INTEGER:= 8);

port (in_data: in std_logic_vector(N-1 downto 0);

all_zeros, all_ones: out std_logic);

end zeros_ones_det;

architecture bhv of zeros_ones_det is

begin

process(in_data)

variable result_and, result_or: std_logic;

begin

result_and:= '1'; result_or:= '0';

for i in in_data'range loop

result_and:= result_and and in_data(i);

result_or:= result_or or in_data(i);

end loop;

all_zeros <= not(result_or);

all_ones <= result_and;

end process;

end bhv;

a
ll_

o
n
e
s

...

...in
_

d
a

ta

in
_

d
a

ta

all_zeros

Daniel Llamocca

▪ ARITHMETIC EXPRESSIONS

▪ We can use the operators +, -, and * inside
behavioral processes. We can also use the comparison statements
(>, <, =, /=, >=, <=).

▪ Example: Absolute value of A-B: |A-B|. A,B: unsigned numbers

➢ my_uabs_diff.zip:

my_uabs_diff.vhd,

tb_my_uabs_diff.vhd

▪ Input length:
Parameter N.

▪ Note that the result
|A-B| is an

unsigned number
with N bits.

▪ ‘_unsigned’: A,B

treated as unsigned
numbers

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity my_uabs_diff is

generic (N: INTEGER:= 4);

port (A,B: in std_logic_vector(N-1 downto 0);

R: out std_logic_vector(N-1 downto 0));

end my_uabs_diff;

architecture bhv of my_uabs_diff is

begin

process (A,B)

begin

if A >= B then

R <= A - B;

else

R <= B - A;

end if;

end process;

end bhv;

